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SUMMARY 
A numerical simulation is presented to predict the free surface and its interactions with heat transfer and 
cure for flow of a shear-thinning resin through the fibre preform. the flow part of the simulation is based 
on the finite element/control volume method. Since the traditional control volume approach produces an 
error associated with a mass balance inconsistency, a new method which overcomes this issue is proposed, 
the element control volume method. 

The heat transfer and cure analysis in the simulation are based on the finite difference/control volume 
method. Since heat conduction is dominant in the through-thickness direction and most of the heat 
convection is in-plane, heat transfer and cure are solved in fully three-dimensional form. A simple concept 
of the boundary condition constant is introduced which models a realistic mould configuration with a 
heating element located at a distance behind the mould wall. The varying viscosity throughout the mould 
associated with the strain rate, temperature and degree of cure distribution may be accounted for in 
calculating the mould-filling pattern. This introduces a two-way coupling between momentum and energy 
transport in fibrous media during mould filling. 

KEY WORDS Resin transfer moulding Porous media Composites processing Finite element/control volume Heat 
transfer Cure 

1. INTRODUCTION 

Flow through porous media has long been a topic of particular interest to  fields such as 
petroleum engineering and ground-water hydrology. The medium through which the flow takes 
place is generally granular and relatively isotropic. Porous media made up of fibers introduce 
an added complexity in that, depending on the fibre arrangement, the media may become 
highly anisotropic. For example, a medium made up of aligned fibres may have a resistance to 
flow in the fibre direction which is an order of magnitude different from the resistance 
perpendicular to the fibre direction.',' Flow through fibrous media is of interest in such fields 
as filtration and composites manufacturing. One such manufacturing process is resin transfer 
moulding (RTM), which takes place under non-isothermal circumstances. That is, the fluid, the 
mould and the fibres may have different temperatures and the temperature will vary throughout 
the porous medium. In addition, the fluids used may be non-Newtonian and the viscosity may 
change not only with the shear rate but also with temperature and degree of cure. 

A schematic view of the process steps 
is shown in Figure 1. The first phase, preform lay-up, encompasses the cutting of one or  more 
pieces of fibre mat or continuous fibre strands into specified shapes. The pieces are then stacked 
and placed in the mould in desired orientations. The second phase, mouldjilling, begins when 

In general the RTM process consists of four 
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Figure 1. RTM process steps 

the mould is closed and viscous fluid is injected into the hot mould. The fluid is usually a 
thermoset polymeric resin and flows around and through the fibre network until the mould is 
filled. Vents should ideally be located at the points of the mould which fill last, to allow the 
displaced air to escape. Heat transfer during this phase predominantly results from conduction 
from the mould walls to the fluid and the flow will be non-isothermal. In the case of high-speed 
processes such as structural resin injection molding (SRIM), viscous dissipation may also play 
a role in the heat transfer. Once the mould is full, the phase of curing starts. The cure is initiated 
by the heat transfer from the hot mould to the cold resin and the polymer reacts into a 
cross-linked network while releasing heat. During this reaction the fluid viscosity increases 
exponentially to infinity as the fluid solidifies. Ideally the curing reaction should not begin until 
the mould is completely filled, since the solidification of the resin may prevent it from 
impregnating the total fibre preform. The curing reaction is highly exothermic and will therefore 
affect the heat transfer substantially. The final phase, part removal, takes place after the curing 
reaction is complete and the part has solidified. A mould release agent is usually applied to the 
mould for easy removal of the part. 

The mould-filling pattern for flow of a fluid through the fibre preform depends on a number 
of parameters. The part geometry, the location of the injection gates and the injection pressures 
or flow rates are perhaps the most obvious ones. RTM parts are typically thin shell non-planar 
structures, the thickness being much less than the other overall dimensions of the part. Multiple 
gates may be used to inject the fluid into the part and injection can take place by regulating 
the flow rate or the injection pressure. Another parameter which will influence the mould-filling 
pattern is the structure of the fibre preform. Fibre preform with different geometries or fibre 
arrangements will offer a different resistance to the flow. Last, the fluid viscosity will vary 
throughout the mould as a function of temperature, degree of cure and, since most resins are 
shear-thinning, as a function of the strain rate. To successfully predict the mould-filling 
behaviour, all these parameters and the nature of coupling should be correctly represented. 

The numerical techniques used to predict mould filling should incorporate the coupling 
between heat transfer, resin cure and flow. In this paper we present a simulation to predict the 
free surface, heat transfer and cure for flow of a resin through the fibre preform. Since RTM 
parts are typically thin shell non-planar parts, only the in-plane flow is considered. The finite 
element method is used to solve for the pressure distribution throughout the mould. The moving 
free surface flow front is treated using the control volume method. The traditional control volume 
method produces an error associated with a mass balance inconsistency. A modified control 
volume approach which eliminates this type of error has been developed. The heat transfer and 
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cure are treated using a three-dimensional finite difference method. It is essential to solve for 
the temperature in three dimensions, since although most of the heat is convected in the plane 
of the part, the dominant mode of heat conduction is in the thickness direction, from the hot 
mould wall to the cold resin. In porous media dispersion of heat may also be important if the 
Peclet number is large.6 We assume that dispersion does not contribute to the energy equation. 
However, the results from the heat transfer part of the simulation are still coupled with the flow 
simulation to predict the mould filling accurately. 

2. THEORY 

Flow through porous media has traditionally been described by the empirical Darcy law,’ which 
relates the fluid flow rate to the pressure gradient, fluid viscosity and permeability of the porous 
medium: 

in which B is the superficial velocity, the velocity one observes on a macroscopic scale; ‘1 is the 
viscosity of the fluid, AP/L  is the pressure gradient in the direction of flow over a characteristic 
dimension of L, and K is the permeability of the porous medium. The permeability is a measure 
of the ease of flow through the medium and is a function of the structure and porosity of the 
medium. 

Most mould-filling processes in anisotropic porous media deals with parts which have a 
shell-like geometry, the thickness being much smaller than the other dimensions of the part. 
This allows us to ignore the flow in the thickness direction and model the flow locally as 
two-dimensional. The fibrous preform is treated as an incompressible porous medium and a 
two-dimensional version of Darcy’s law is used to describe the pressure-flow rate relationship 
in a medium with non-isotropic permeability.’ In using a two-dimensional form of Darcy’s law, 
we give up the details of the velocity profile through the thickness and use average velocities. 
These gap-wise averaged velocities V for an isothermal generalized Newtonian fluid may be 
written in matrix form as 

Here qeff is the viscosity of the fluid, P is the pressure and K is the permeability tensor, which 
is a second-order tensor. In the case of shear-thinning fluids the viscosity is also a function of the 
pressure gradient and the resulting equations are non-linear. ‘ v 9  Other variables which may 
influence the effective viscosity are the local temperature and the degree of cure.’ 

Even if the permeability of the anisotropic porous medium does change in magnitude, as long 
as its principal directions remain the same, one can always diagonalize the permeability matrix. 
Usually the reinforcement and hence the permeability matrix will vary throughout the mould. 
The reinforcement will consist of different types of mats or lay-ups placed at  different orientations 
in the mould. For such cases it is not possible to find a common principal co-ordinate system 
in which the permeability matrix wil diagonalize everywhere in the mould. Hence one has to 
take into account the full permeability matrix. After applying the continuity condition to 
Equation (2), the governing equation for the pressure distribution becomes 
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where the value of the permeability matrix may vary throughout the mould. 
The boundary conditions on equation (3) are zero pressure at the free flow front and, since 

we assume there is no leakage through the mould walls, the velocity component normal to the 
mould wall has to equal zero at the mould wall. For an isotropic porous medium this results 
in zero pressure gradient normal to the mould boundary. However, for an anisotropic medium 
we have 

'lerr at 
(4) 

where n denotes the direction normal to the mould wall and t the direction tangent to the mould 
wall. Once the pressure distribution has been found, averaged velocities across the thickness can 
be calculated from equation (2). 

This pressure formulation is presently widely ~ s e d , ~ - ' ~  since it enables one to solve for a 
scalar variable rather than for a vectorial quantity such as the velocity. The advantage is that 
one can solve the governing equation for non-planar shell-like geometries in three-dimensional 
space. 

2.1. Heat transfer and cure 

In processes such as RTM the mould filling does not take place under isothermal conditions. 
In general the mould is heated and cool resin is injected into the mould. As the resin flows 
through the fibre preform, heat transfer between the mould walls, the fibre preform and the resin 
will take place. Therefore the resin temperature will vary thoughout the mould. Since the fluid 
viscosity is strongly dependent on the temperature, it will also vary throughout the mould, thus 
influencing the mould-filling pattern. Moreover, as the resin temperature increases, cure will 
initiate. Resin cure is a strongly exothermic reaction which will influence the overall heat transfer 
substan tially. 

A simple scaling analysis reveals that heat conduction in the thickness direction from the 
mould wall to the resin is as important as convection in the in-plane flow direction. Consequently, 
it is not possible to limit the analysis to the thin shell approach adopted for the flow simulation. 
The heat transfer needs to be analysed in three dimensions to account for the energy balance 
of conduction in the thickness direction, convection in the in-plane directions and heat generation 
due to the exothermic reaction when curing initiates. Once the temperature field is known, the 
fluid viscosities may be calculated. A through-thickness average fluid viscosity may then be used 
to solve for the pressure distribution. 

2.1.1. Energy equation. Heat transfer in flow through porous media has been analysed by a 
variety of a~thors. '~- ' '  It should be noted that no universal agreement exists on the analysis 
of the heat transfer in porous media. Several authors have presented studies of heat transfer 
during composite manufacturing processes, using a number of different approaches.''-'' The ap- 
proaches can be grouped into two categories : the two-phase models and the equilibrium models. 
In the two-phase model one takes into account convection between the fibre preform and the 
fluid. However, no theoretical means of predicting the heat transfer coefficient governing this 
convection process exists and thus it has to be determined experimentally for each fluid/fibre 
preform combination. The equilibrium approach assumes the fluid and fibre medium to have 
the same temperature at  each point. In essence, one assumes the heat transfer coefficient to be 
infinite. An experimental ~ t u d y ' ~ * ~ '  on flow through fibre mats has shown that the equilibrium 
model is a valid assumption in slow processes such as RTM. For the heat transfer in a fast 
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Figure 2. Cross-subsection of a mould with fluid and fibre preform 

process such as SRIM, this assumption may break down. Here the equilibrium model will be 
used to account for the heat transfer between the fibres and the fluid. 

The constituents in the mould are resin and fibre preforms as depicted in Figure 2, so the 
intrinsic thermodynamic quantity internal energy will represent both. Since we are considering 
a thin shell geometry, for which the thickness is small compared with the other dimensions, a 
scaling analysis will show that the in-plane conduction and out-of-plane convection are negligible 
and can therefore be ignored. Ignoring convection in the thickness direction is also consistent 
with the method used to solve for the movement of the free surface flow front. For RTM flows 
the Peclet number is usually low, hence we assume that the heat dispersion effect due to the 
pores in insignificant. With these assumptions the energy equation takes the form 

where T is the temperature, t is the time, pr, cp,, pf and cPr are the density and heat capacity of 
the resin and fibre preform respectively and 4 is the porosity or 1 - V,, where V, is the fibre 
volume fraction. The first term represents the change in internal energy of both the fluid and 
the fibre preform. The second term represents the contribution due to convection of the fluid. 
Conduction through the thickness is taken into account by the first term on the right-hand side, 
S is the source term and represents the energy generated in the resin as a result of curing. 
Normally this term is very small or should be small until the filling is complete. Since the filling 
time is much shorter than the reaction time in RTM, this term does not pose any numerical 
problems, K is the effective through-thickness conductivity of the fluid/fibre medium combination, 
which may be calculated using a self-consistent rnodeLz2 The self-consistent model is based on a 
simplification of the medium consisting of cylinders. Using this model, the effective conductivity 
for a transversely isotropic fibre medium and fluid may be expressed in terms of the conductivity 
of the fibrous medium, K ~ ,  and that of the fluid or resin, K,,  as 

To solve for Equation (5),  four boundary conditions need to be applied. At the boundaries 
of the physical domain three conditions are necessary, one each at the top and bottom mould 
platens and one at the flow front. Since in-plane conduction is ignored, no boundary condition 
is necessary at the mould side edges. Finally, a boundary condition is needed at the injection 
gates. 

Several types of boundary conditions (constant temperature, convective or mixed) may be 
applied to the temperature equation at the top and bottom mould platens. The simplest 
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Figure 3. Configuration used to obtain the temperature boundary condition at the mould platens 

approximation is a constant temperature at the mould platens." However, experimental studies 
have shown that the mould temperature will undergo significant fluctuations during the mould 
filling.' * A more general boundary condition may be derived by a quasi-steady-state analysis 
of a typical mould configuration. A mould is assumed to have a heating pipe at a distance u 
from the mould wall as shown in Figure 3. The pipe is heated with a fluid at temperature T, 
and there is a heat transfer coefficient hh between the heating fluid and the pipe. The heat transfer 
coefficient between the resin and the mould wall is h,. This configuration results in the boundary 
condition 

a8 
-- + cb,e = 0, az 

where 8 = T - T, and 

1 1 
"' = 

l / h h  4- l / h ,  4- U / K ,  

(7) 

Here IC, is the conductivity of the mould material. This formulation results in one boundary 
constant C,, which is zero for the insulated or adiabatic case boundary condition and which is 
infinity when one wants to specify a constant temperature boundary condition. The heat transfer 
coefficient between the mould platen and the resin needs to be measured experimentally, since 
there is no theoretical way to predict this parameter. 

For a realistic value for Cbc, consider that the heat transfer coefficient between steam and 
metal is around 7000 W m-' K - '  and the conductivity of steel is around 500 W m-l  K-'. For 
a steam-heating element located 10 cm behind the mould surface the resulting boundary 
condition constant would be of the order of 50 m-'. 

Owing to the transient nature of the problem, one has to take into account the internal energy 
of the fibre preforms which are impregnated by the moving flow front. This is done by performing 
local heat balance at the flow front, which takes into account the convection into the unsaturated 
medium. 

The last boundary condition is the specification of the fluid temperature at the injection gates. 
This condition should only be applied during the mould-filling stage. Once the mould is full, 
the fluid injection stops and this boundary condition vanishes. The energy equation reduces to 
a balance between conduction across the thickness and heat generation, since there is no longer 
any convection. 

2.1.2. Resin cure. The only term which still needs to be defined in the energy equation is the 
source term. To describe the heat generation due to cure in the energy equation (3, a model 
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that is well suited to represent the curing behaviour of polyester as well as epoxy resin is 
It assumes the specific energy generated during curing is proportional to the rate of 

the reaction: 

S = R, E,,  (9) 
where R,  is the rate of the reaction and E ,  is the reaction energy. The reaction rate itself is a 
function of temperature and the extent of the reaction: 

R, = (k, + k,a")(l - a)". (10) 

The values of k,  and k, are Arrhenius functions of temperature: 

k l  = A ,  exp(%), 

where R is the universal gas constant. The constants A, ,  A,, El ,  E,, m and n are material 
constants which may be determined by differential scanning calorimetry for a particular resin 
system." 

It should be noted, however, that many semi-empirical models for resin cure exist. Most 
describe the behaviour of certain resins well but fail to accurately describe the behaviour of 
other resins. Therefore it is essential to determine which model properly describes the resin one 
intends to use if an accurate cure solution is desired. 

Since the resin flows through the mould, an expression for the convection of the degree of 
cure is necessary. Conservation of species may be expressed by a continuity equation 

2.1.3. Temperature-, cure- and strain-rate-dependent viscosity. Finally, for non-isothermal and 
shear-thinning flow behaviour, one needs to consider that the resin viscosity is not a constant 
but a function of temperature, strain rate and cure. The strain rate behaviour for a power-law 
fluid and a Carreau fluid is described in detail in our previous papers.ln9 The temperature- 
dependent behaviour is traditionally modelled using an Arrhenius equation which describes the 
viscosity as an exponential function of temperature: 

'l = 'lo exp( - 4 (13) 

where 0 = T - T, with To being some reference temperature at which the viscosity is equal to 
'lo. 

In addition, the viscosity of the resin will change as the cure proceeds. Models that represent 
the dependence of viscosity on the degree of cure and temperature are referred to as chemorheolo- 
gical models. A model that describes the behaviour of polyester resins well is described in 
Reference 26. 

The variation in the viscosity with temperature and degree of cure introduces a two-way 
coupling between the fluid flow and energy equations. Since the degree of cure is close to zero 
until the mould is filled, it does not cause any numerical problems. Also, a three-dimensional 
temperature solution is coupled with a two-dimensional pressure solution through the viscosity. 
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This is accomplished by calculating the average viscosity through the thickness 
across the thickness h at each point in the plane of the mould: 

by integrating 

1 1 h l  
: = J, ; dl. 
rl 

This value may then be used in calculating the pressure distribution in Equation (3). 

3. NUMERICAL IMPLEMENTATION 

In the previous section the theory governing the flow through fibrous media was discussed. In 
this section we present the approach to develop a numerical simulation that can describe the 
macroscopic flow front of non-isothermal flow through an arbitrary thin shell three-dimensional 
geometry. 

An important issue in the simulation of mould-filling processes such as RTM, compression 
moulding and injection moulding is the numerical treatment of the transient free surface or the 
moving boundary (the boundary where the fluid is displacing air in the mould cavity). The 
material inside the mould is constantly changing shape as it flows. This makes it necessary to 
redefine the geometry of the domain in which the governing equations are to be solved after 
each successive time step. The governing equations for these filling models have been solved by 
a variety of numerical  technique^.'^*'^*^'-^^ The techniques which require redefining of the mesh 
and mesh generation for mould-filling problems have the drawback of being tedious, and 
bookkeeping when two flow fronts merge or for flow around inserts can be quite cumbersome. 
Mesh generation even after a few time steps could be the most tedious part of the simulation. 
Finite element/control volume (FE/CV) is an attractive alternative, since one does not need to 
remesh it and it is possible to simulate filling in thin cavities with highly complex geometries. 
A key feature of the FE/CV method is a rough approximation of the domain shape combined 
with a rigorous accounting of the mass conservation. The traditional control volume approach 
introduces an error when skewed elements are used. For these types of meshes the mass 
conservation condition may be violated.33 

3.1. Finite element/control volume method 

One needs to discretize the governing equation (3) in a flow domain changing with time in 
order to capture the physics of flow through an arbitrary three-dimensional thin shell geometry. 
The discretized governing equation can then be solved, and once the pressures are known, the 
change in the shape of the fluid domain needs to be calculated. This is accomplished by a 
numerical simulation based on the finite element/control volume method. The part geometry is 
modelled as a thin shell in three-dimensional space using triangular and/or quadrilateral elements 
of specified thickness. Different elements may have a different thicknesses to account for 
variations in the gap height of the mould. Galerkin finite element equations are used to solve 
for the pressure at any instant during the filling process and the control volume approach is 
used to advance the free surface flow front. 

3.1.1. Pressure solution. Bilinear basis functions are used in the present discretization of the 
governing equation (3). This results in C, continuity of the resulting pressure solution. The 
pressure values will be continuous across elements, but the first derivatives may not be. Galerkin’s 
method, in which the interpolation functions are the weighting functions, is used. The element 
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stiffness components are assembled on a nodal basis, resulting in a set of algebraic equations 
in terms of the stiffness matrix [[Sq] and the nodal pressure vector [PI for the whole fluid 
domain: 

The element stiffness matrix components are calculated using a Gaussian quadrature integration 
technique. After the stiffness matrix is assembled for all elements in the fluid domain, it is modified 
to account for the Zero pressures at the free surface flow front and for the specified pressures 
at the fluid injection locations. 

Injection at constant flow rate is incorporated by modifying the forcing vector (right-hand-side 
vector) at the injection nodes. Since the left-hand side of the equation represents the continuity 
condition, the value of the forcing vector specifies the amount of mass generated per unit time 
at the selected node. If an injection flow rate Qbe is specified at a given node i as a boundary 
condition, then the forcing vector for row i in equation (15) will be modified according to 

Sources which are not specified at a node but in the interior of the element are not considered 
in the current simulation. 

The stiffness matrix is assembled on an element basis using a local element co-ordinate system. 
The permeability tensor needs to be transformed from the global (1,2) co-ordinate system to 
the local element (x, y) co-ordinate system using a regular matrix rotation transform: 

>, 
K x x  Kx, cos 8 sin 8)(Kl1 &)(ax 8 -sin 8 
(K, K,)= (-sing case K,, sin 8 cos 8 (17) 

where 8 is the angle between the two co-ordinate systems. 
In complex three-dimensional geometries it is often not possible to use the global co-ordinate 

system, with respect to which the mould geometry is specified, as a reference for the permeability 
tensor. The projection of any of the three global co-ordinate axes on the mould surface is used 
as the 1-axis with respect to which the material properties in that section of the mould are 
specified. The simulation then performs the rotation from that co-ordinate system to the local 
element co-ordinate system to assemble the stiffness matrix. Figure 4 shows an example of a 

2, 

Figure 4. Example of a mould geometry with the various wordinate systems used in specifying the permeabilities 
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mould surface with the different co-ordinate systems. Here the 3,-axis of the global co-ordinate 
system is chosen as the reference axis, which yields the 1-axis when projected on the mould 
surface. The angle of rotation between the 1-axis and the local element x-axis is in this case 
- 90". After the stiffness matrix is assembled and all boundary conditions are applied, the system 
is solved for the unknown pressures using a standard matrix inversion technique. 

For generalized Newtonian fluids, where the viscosity is a function of the strain rate of the 
fluid, an iterative solution procedure is required. The viscosities obtained at  the previous time 
step are used as a first guess for the local viscosities at the present time step. With these values 
the stiffness matrix is assembled and the pressures are calculated. The viscosities are then 
recalculated throughout the mould and the governing pressure equation is solved. This iterative 
procedure is continued until the maximum relative difference between nodal pressure values at 
subsequent iterations is less than a user-specified convergence criterion. To increase the rate of 
convergence, an underrelaxation technique is used. In applying this technique, the pressure used 
to calculate the new viscosity for the next iteration is selected according to the equation 

Pi = nc + (1 - A ) P y ,  

where 1 is the underrelaxation parameter, P: are the nodal pressures just calculated and e-' 
are the pressures obtained during the previous iteration. From experience it is found that for 
power-law fluids the power-law exponent is in general a good choice for the underrelaxation 
parameter. 

Once the nodal pressures are known, the velocity field is obtained from Darcy's law by using 
the derivatives of the interpolation functions to obtain the pressure gradient. The derivatives of 
the interpolation functions are evaluated at the element centroids for the greatest accuracy, 
resulting in elemental rather than nodal velocities. It is not necessary to solve for the velocity 
if one employs the control volume approach to calculate the location of the free surface of the 
fluid. 

3.1.2. Control volume approach. After solving for the pressures, the position of the free surface 
flow front needs to be updated. The movement of the transient free surface flow front is calculated 
using the control volume approach. This approach is pragmatic and very efficient. It allows one 
to monitor the degree to which each element is filled with fluid. First the traditional control 
volume approach will be discussed. Since the traditional control volume approach results in a 
mesh-dependent error in the location of the free surface flow front, a modified control volume 
approach is suggested which eliminates this type of error. 

3.1.3. Traditional control volume approach. The mould geometry is not only divided into 
elements but also into control volumes, by associating one with every node. The traditional 
control volume is bound by the element centroids and the element mid-sides. A typical 
configuration is shown in Figure 5. The flow rate between control volumes is calculated by 
multiplying the superficial velocities by the area connecting two control volumes. The control 
volumes associated with nodes i and j are indicated by the shaded area in Figure 5. Assuming 
a linear pressure profile between the nodes and using the average element height, the equation 
for the flow rate qi j ,  from node i to node j may be written as 

W hi + hj 
Veff 2 

Pi  - P j  
qii = - ___ 



VISCOUS FLOW THROUGH FIBROUS MEDIA 585 

1 

L* 

- Finite elemem mesh 

- . - - - - - conrrol volumes 

Figure 5. Finite element mesh with control volumes 

where W is the width of the connecting area and 1 is the distance between nodes i and j. The 
permeabilities K i j  are taken in the local element co-ordinate system (x, y) as opposed to the 
global mould co-ordinate system (1,2). JP/Jn is the pressure gradient perpendicular to the 
direction of flow and is obtained by taking the average of the pressure gradient normal to the 
direction of flow in the two adjacent elements. Since the pressures are already known at this 
stage, the value of the viscosity qeff is also known at each nodal point, so the generalized 
Newtonian case presents no special problem. 

Once the flow rates between control volumes are known, the total net flow into each control 
volume j may be calculated as 

N 

where N is the number of control volumes connected to control volume j and At is the size of 
the time step. 

Nodal fill factors are used to track the moving flow front. The fill factor for each node is the 
fraction of its control volume occupied by the fluid. As shown in Figure 6, the fill factor is zero 
for an empty control volume and unity for a completely filled one. The nodal fill factors are 
used in determining where to apply the flow front boundary conditions for the pressure solution. 
Pressures are calculated at completely filled nodes, while empty nodes are ignored. Partially 
filled nodes are assumed to lie close to the front and the flow front boundary condition is applied 
there. The size of the time step is calculated such that only one control volume fills at each time 
step, thus modifying the boundary condition at only one node. The flow front is advanced at 
each time step by updating the fill factors, using the total flow rate into a control volume from 
equation (20). With this technique one can fill thin cavities with highly complex geometries in 
three-dimensional space and also account for the variation in the gap height of the part. 

This implementation of the control volume approach introduces errors in the flow rates which 
depend on the mesh geometry. This error can be demonstrated by using the simple mesh 
configuration in Figure 7. The mesh consists of triangular elements, with one side of the triangle 
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Figure 6. Nodal fill factors. The shaded region represents the filled area of the mould 

having a length a and the other side a length b. In this one-dimensional example the pressure 
drop will be linear and the pressure difference between the two lower rows of nodes is 
A P  = P, - P,, The total flow into the shaded control volumes using equation (19) is 

assuming the permeability, viscosity and element thickness to be equal to unity. Theoretically, 
the total flow rate should be the pressure gradient times the connecting area, given by 

AP 
b 

Qi: = 2a - . 

It is easily seen that when the triangles are equilateral (a = b), the theoretical or exact flow 
rate corresponds to the actual flow rate. However, as the elements become more skewed, the 

Figure 7. Triangular mesh to demonstrate the error in the traditional control volume approach 
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Figure 8. Error percentage resulting from the control volume method versus the ratio of the element sides 

difference increases rapidly. Figure 8 shows the error percentage versus the ratio of the element 
sides. If the ratio u/b equals 06, the flow rate from the control volume method is 25% greater 
than theoretically calculated value. Note that this error is dependent only on the ratio of the 
element sides. Mesh refinement, while keeping the element shape the same, will not increase the 
accuracy of the control volume method. 

3.1.4. Element control volume method. Both the intrinsic errors which occur in the traditional 
control volume method can be corrected by modifying the geometric location of the control 
volumes. We propose to use an element control volume method. In this method the elements 
and the control volumes coincide. This technique has a number of distinct advantages over the 
traditional control volume method. First, it eliminates the error caused when the elements are 
not exact rectangles or equilateral triangles. Second, it eliminates any violation of the continuity 
condition in a control volume. The finite element equations are solved on an element basis and 
therefore the pressure distribution in each element obeys the continuity condition. The resulting 
flow rates will then also be in accordance with the continuity condition. There may still be some 
mass discontinuity between elements, but this will not effect the shape of the flow front or the 
heat transfer calculations. 

The application of the finite element boundary conditions is slightly different than in the 
traditional control volume approach. The node at which the boundary condition is applied 
should be as close to the actual flow front as possible. Since the nodes are no longer at the 
Centre of the control volumes but make up the corners of a control volume, the boundary 
conditions are applied based on the fill factor of the element under consideration and the fill 
factor of the neighbouring elements. If an element is less than half full, the boundary conditions 
are applied at the nodes of the element which also connect to a full element, such as node 2 
depicted in Figure 9. If an element is more than half full, the conditions are applied at the nodes 
of the element which also connect to  an empty element, such as nodes 1, 3 and 4 shown in the 
same figure. All other nodes connected to completely empty elements are ignored and the 
pressure is calculated at the remaining nodes. 

In this approach the boundary conditions are modified when a fill factor increases from less 
than half to more than half. Therefore the size of the time step is restricted by the first control 
volume that fills halfway. In the traditional control volume method the time step was based on 
an empty or partially full control volume being filled completely. A control volume filling 
completely does not change the boundary conditions in the element control volume method. 
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Figure 9. Nodes at which the flow front pressure boundary condition is applied using the element control volume method 

Therefore, in one time step a control volume that is more than half full may fill completely and 
the neighbouring control volume may fill halfway. Thus the flow front may be advanced by a 
full element in a given time step. If an element is less than half full, the pressure will be zero at 
all nodes of the element, resulting in a zero pressure gradient inside the element. To fill this 
element, the flow rates calculated from the neighbouring elements are used. 

Once the pressure distribution is known after solving the finite element equations, the flow 
rates between the control volumes are calculated using 

where the pressure gradients are calculated from the pressure solution using the shape functions 
N ,  of the element: 

In these equations, similarly to the traditional control volume approach, (x.y)  is the local 
co-ordinate system with x aligned in the direction of flow, as opposed to the global mould 
co-ordinate system. 

It is clear that the element control volume method does add some complexity in applying the 
boundary conditions and advancing the flow front in comparison with the traditional control 
volume method. However, the extra computational effort required for the element control volume 
method is less than 5% in terms of the total simulation CPU time. 

Virlouvet and Tucker33 recently proposed a method similar to the element control volume 
approach. Their method is based on retaining the stiffness matrix and multiplying it by the 
obtained pressures to find the total flow rates into each control volume. Although their method 
results in the same total flow into each control volume as our element control volume method, 
no specific information is available about the flow rates between two connecting elements. When 
solving for isothermal flow, this is no consequence, but for non-isothermal mould filling one 
needs this information to take into account convection between control volumes. 

The main characteristic of the element control volume method is that it eliminates the 
meshdependent error produced by the traditional control volume method. Second, it eliminates 
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the discretization error due to the C ,  continuity of the pressure solution inside the control 
volume. Instead, there will be a discretization error in between two control volumes (i.e. the 
flow rate out of one element may not exactly equal the flow rate into the neighbouring element). 
However, this error does not influence the temperature solution, unlike the error in the traditional 
control volume method. The element control volume method increased accuracy by far 
outweighs the slight increase in CPU time. 

3.2. Temperature solution 

The temperature and degree of cure profiles are obtained using a partially implicit finite 
difference method. Owing to the heat transfer from the top and bottom mould platens to the 
resin and preform, one must account for the conduction in the thickness direction. Consequently, 
the temperature distribution is calculated in three dimensions. The convective terms in the energy 
equation and the convection of degree of cure are taken into account using a control volume 
method, consistent with the approach used to solve for the movement of the free surface flow 
front. 

A modified Crank-Nicolson approach is used to discretize the energy equation (5). This 
method has the advantage that it is unconditionally stable and has little upwinding  effect^.^^.^^ 
Since the control volumes are defined to coincide with the elements in the element control volume 
approach, the control volumes for the energy calculations are defined accordingly. Each control 
volume defined for the flow analysis is subdivided through the thickness into control volumes 
for the temperature analysis as shown in Figure 10. The energy balance is carried out in each 
control volume. This implies that the temperature will be obtained at the centroid of each control 
volume. One can then calculate nodal temperatures through the thickness by taking the average 
of the temperatures of the connecting control volumes. 

The energy balance for a typical control volume i with the centre at through-thickness location 
z and height Az as depicted in Figure 11 is 

V " + l ( T " + l  - T") + AVCIT" + AV(l  - cIKT" - TJ 
N + Sc3At,  

where the superscript n denotes the known values at  the current time step and n + 1 the values 
to be calculated at the next time step. T, is the initial temperature of the fibre preform and A 
is the surface area of the top and bottom of the control volume through which the conduction 

1 .  - A n b E e n m r # I h a h n d ~  
W L U j l - C a L . o l V M I  

Figure 10. Control volumes used in the temperature and cure analysis 
. 1 - e  
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takes place. The convection contribution is taken into account by the summation over all N 
neighbouring control volumes, where qir is the flow rate from the neighbouring control volume 
into the one under consideration and q,i is the temperature at the interface between two control 
volumes. s is the total rate of heat generation in the control volume. The terms AVarise from 
the flow front boundary condition. AVis the fraction of the control volume which is filled during 
the current time step and Y+l  is the total fraction of the control volume which is occupied by 
fluid. If the control volume is completely filled, the A V  terms will vanish and CA and Y + l  will 
equal the total volume of the control volume. The constants ck are related to the thermal 
properties of the fibre and resin as 

In using the Crank-Nicolson method, one essentially expands the solution about the time 
t + At/2. This results in the following expressions for the expansion of the variables used in 
equation (25): 

s = :(s"prv" + ?+lprV"+l).  (274 

As shown in Figure 11, i + 1 denotes the control volume above the one under consideration and 
i - 1 is the one below. To account for the boundary conditions at the top and bottom mould 
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walls, the following expressions are used for the nodes at  the mould wall: 

Since the temperature node is at the centroid of the control volume and not at the mould wall, 
the mould wall temperature is 

aT bz Twall = 7: f - - --,  aZ 2 

Substituting this back in equation (7) results in the following expression for Cb,: 

1 
1/C, + AzJ2 * 

c'--.-. 
bc- 

This boundary condition is implicit in nature, since it contains the temperature at the next time 
step. 

In order to solve this set of equations, an iterative procedure is used. Since the node numbering 
of the finite element mesh specified by the user of the simulation is arbitrary, assembling the 
temperature equations for all control volumes would result in a sparse matrix. However, the 
through-thickness control volumes are numbered consecutively by the simulation, e.g. i - 1, i 
and i + 1 as shown in Figure 11. The neighbouring j-nodes may be numbered arbitrarily. In 
order to avoid excessive computer time and memory requirements, the temperature field is solved 
successively at  each in-plane location through the thickness. Assembling the energy balance 
equations (25) for a row of through-thickness nodes results in a banded tridiagonal system that 
can be solved efficiently using the Thomas alg~ri thm:~'  

[[ST]] = CRI, (3 1) 

where [[ST]] is a triadiagonal matrix. The terms from the energy balance that depend on the 
in-plane neighbouring temperatures T,. are contained in the right-hand-side vector R. This 
solution procedure is applied to all in-plane mould locations and repeated until a convergence 
criterion is satisfied: 

where E is the magnitude of the convergence criterion and k is the iteration number. A 
Gauss-Seidel iteration is used so that the right-hand-side vector reflects the most recently 
obtained temperature values. 

3.2.1. Cure solution. Since the source terms as given by equation (10) to obtain the temperature 
solution is non-linear, the value of the temperature at the most recent iteration is used to obtain 
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s"+ in equation (27). Once numerical convergence is achieved and the temperatures are known, 
one can calculate the final rate of the reaction from equation (10). To account for the convection 
of the extent of the reaction, a, the following equation is used for conservation of species: 

This equation represents a conservation of species or the extent of the reaction. In using this 
equation, a is linearized owing to the convective terms. Since the values of the extent of the 
reaction in neighbouring elements are close, this assumption is justified. 

3.2.2. Average effective viscosity. The temperature and cure kinetics are coupled with the fluid 
flow equations by the viscosity. Once the temperature and the extent of cure are known in each 
control volume, the viscosity may be calculated using equation (13) if the cure reaction has not 
initiated, or with a chemorheological model after the curing initiatesz6 To obtain the viscosity 
in the plane of each finite element used in the pressure solution, the average effective through- 
thickness viscosity is calculated using 

where qi is the viscosity at  each through-thickness node and N is the number of nodes through 
the thickness. The value of qerr is used to calculate the pressures and advance the flow front at 
the next time step. 

3.3. Summary of numerical implementution 

Figure 12 shows an overview of the numerical simulation, titled LIMS, an acronym for Liquid 
Injection Moulding Simulation. The user of the simulation supplies the mesh, permeabilities, 
gate locations and flow rates or injection pressures, material constants (rheological, thermal and 
chemical), the number of nodes through the thickness for the temperature simulation, and the 
temperature boundary condition constants. With this information the pressure distribution in 
the mould may be calculated. In the case of shear-thinning fluids the viscosity based on the 
pressure solution is calculated and then the pressure distribution is recalculated. This procedure 
is repeated until the pressure solution converges to within the user's specification. Now the flow 
rates between the control volumes may be calculated and a time step chosen such that only one 
control volume fills up to 50%, ensuring that the boundary conditions change only at one 
location. Once the time step is known, the fill factors may be updated based on the calculated 
flow rates. Then the temperature distribution is calculated as discussed in the previous 
subsections. Simultaneously, the extent of the reaction is updated in each control volume and 
the average through-thickness viscosity is calculated. A test is performed to check whether all 
the fill factors equal unity, which signifies that the mould is full. If this is not the case, the 
simulation solves for the pressure again and repeats the cycle until the mould has filled. Once 
the mould is full, only the temperature and cure kinetics equations of the numerical implementa- 
tion need to be solved, until the extent of the reaction equals unity in all control volumes and 
the part has cured completely. 

Note that the heat transfer and the flow parts of the simulation are coupled. The flow depends 
on the heat transfer through the viscosity, while the heat transfer depends on the flow through 
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Figure 12. Flowchart of the numerical simulation 

the convection of the fluid. The simulation does allow one to solve for the flow and heat transfer 
in an iterative manner. However, in our experience this is not necessary and does not significantly 
enhance the accuracy of the solution. Table I provides an overview of the input parameters 
necessary to perform the various simulation steps and the output available from the simulation. 

3.4. Verification of the numerical simulation 

The simulation was verified by comparing the results with analytical solutions, checking 
convergence with mesh refinement and by comparison with  experiment^.'^ In this subsection 
we will compare the results of our simulations with known closed form solutions for four test 
problems. The details are documented in Reference 36. The first is a one-dimensional flow into 
a mould with varying gap width. The second case is flow of a power-law fluid into a rectangular 
mould. Since the equations for this case are non-linear, the iterative procedure is used to obtain 
the numerical solution. Third, an injection of a fluid in the centre of a square mould with an 
anisotropic fibre medium is studied. The fourth test case verifies the non-isothermal filling of a 
mould. 

3.4. I .  Mould with varying gap widrh. The mould under consideration for this test case is shown 
in Figure 13. Fluid is injected from one end into a mould which has a different gap width in 
the first section of the mould than in the second section of the mould. Using Darcy's law and 
applying the continuity condition at  the cross-section where the change in gap width occurs 
yields the following equation for the total fill time of the mould: 
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Table 1. User-specified input and output from the simulation steps 

Solve pressure 
In-plane mesh node co-ordinates x, y, z 
Element connectivity and thickness h 
Injection location and pressure or  flow rate 
Chemorheological parameters 
Preform permeabilities K, , ,  K,,, K,, for each material 
Fluid rheological properties q (Newtonian) or  m, n and/or zl,, (shear-thinning) 

Output Nodal pressures 
Nodal velocities 

Input 

Calculate viscosity 
Output Nodal viscosities 

Test for convergence 

Relaxation parameter (optional) 
Input Convergence criterion 

Calculate Row rates 

Flow front position 
Output Current time in simulation 

Solve temperature 
Input Number of through-thickness nodes 

Through-thickness node distribution 
Mould boundary condition constant C,, and temperature T, 
Resin thermal properties prch and K, 
Fibre thermal properties p,c, and K~ 
Porosity 4 
Viscosity temperature dependence parameters 

Output 3D temperature field 

Solve cure 
Resin cure model parameters, equation (10) 
Chemorheological parameters 

Input 

Output 3D cure distribution 

Figure 13. Mould with varying gap width 
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Figure 14. Comparison bctwcen the theoretical and numerically obtained power-law fluid for a number of differrnt 
mesh sizes 

where Pi is the injection pressure and Li and hi are the length and gap width respectively of the 
two sections of the mould. Figure 14 compares the fill time from the numerical simulation with 
the theoretical fill time for a number of different mesh sizes. K ,  q and P,  were all set to unity, 
L,  = 04, L2 = 0 6 ,  h ,  = 1 and h,  = 0 3  for this test case. The theoretical mould fill time is 
tIill = 1.32. The number of elements in the length of the mould was varied and two elements were 
used in the mould width. 

Even a very coarse mesh gives excellent results for this mould configuration and there is no 
significant improvement in the numerical results with mesh refinement. Since in this case the 
pressure drop in both sections of the mould is linear, the simulation can capture the pressure 
profile exactly at  each time step. Also, since all elements are the same size, this pressure profile 
will be exactly the average profile during the filling of the control volumes. Thus even a coarse 
mesh can capture the physics of this process very well and yield accurate numerical results. 

3.4.2. Power-lawfluid. To verify the accuracy of the iterative procedure used to calculate the 
mould filling using power-law fluids, a simple rectangular mould is used. The fluid is injected 
from one side into the mould, resulting in a one-dimensional flow as the mould fills. In this case 
the capillary model was used to obtain an expression for the effective viscosity.' The fill time 
of the mould can be calculated analytically as 

where L is the mould length and C, is the constant of proportionality between the wall shear 
stress and the pressure gradient. Figure 15 compares the numerically obtained and theoretical 
fill times for m, K and P,  all unity. With a power-law index of 0.5, resulting in a = 2 and a mould 
length of 20, the theoretical time required to fill the mould is 93.3. Using the power-law index 
as the underrelaxation parameter requires an average five iterations per time step to achieve 
convergence to within From the figure it is clear that the numerical solution tends to the 
analytical answer as the mesh is refined; however, using more than 50 elements in the length 
direction does not increase the accuracy significantly and the rate of numerical convergence 
decreases. 

3.4.3. Injection in the Centre of a Square Mould. The last comparison for the isothermal case 
between numerical and analytical data was done using a square flat mould with an injection 
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Figure 15. Relative error in the fill time for onedimensional flow of a power-law fluid for a number of different mesh sizes 

gate at the centre. The permeabilities were 1 and 0.1 respectively in the x- and ydirections 
representing a unidirectional fibre mat. As shown in Reference 5, the flow front should progress 
as an ellipse with the ratio of the major and minor axes equal to the square root of the ratio 
of the principal permeabilities. In this case the mould was filled at a constant flow rate. Since 
the area of an ellipse with major and minor axes a and b respectively is nab, mass continuity 
predicts the shape of the flow front to be 

where 1 J K ,  I is the position of the flow front along the x-axis and IJK,, is the position along 
the y-axis. Qi is the injection flow rate. Figure 16 plots the combined error in the location of 
the flow front along the x- and y-axes for three different mesh sizes, 10 x 10,25 x 25 and 50 x 50. 

Note that the error increases at the start of the simulation and then levels off. The pressure 
distribution in the mould behaves like log(l/r2), where r is the distance from the injection gate. 
At the onset of the simulation the pressure gradient will vary greatly over a short distance. The 
simulation has to approximate this behaviour by assuming a constant gradient in each element, 

Figure 16. Percentage error in the location of the flow front for three mesh sizes for injection into the centre of a square 
mould 
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Figure 17. Mould and co-ordinate frame used in the theoretical verification of the temperature distribution 

and makes a certain error in doing so. As the mould fills, the pressure gradient will become 
smoother, and the simulation produces more accurate results. 

3.4.4. Non-isothermal filling with constant temperature boundary condition. In this case the 
boundary condition constant, C ,  was set to 5000m-', indicating a constant temperature 
boundary condition. The temperature of the mould platens was set to 100°C and the fluid 
injected at 0°C and at a constant flow rate. The effect of the preform was ignored in this case 
and therefore the porosity was set to unity. Figure 17 shows the mould and the co-ordinate frame 
used in this simulation. 

Ignoring conduction in the in-plane direction, an analytical solution for the temperature profile 
is 

where 

x' = px/u, (39) 

0 = 7- - ~mouldvall, 
A, = (2n + l)n/2h. 

Here p is the diKusivity of the fluid, defined as K/P~C,,,, and I is half the mould gap width. The 
values of the constants used in this simulation are listed in Table 11. 

Table  11. Values of t h e  cons tan ts  
used t o  verify t h e  tempera ture  dis- 
t r ibut ion 

Constant Value 

h 
s 
U 

1 
1 
1 
0 

100 
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Figure 18. Temperature distribution along the mould mid-plane for two different mesh sizes 

The simulation was performed using a number of different mesh sizes. The number of elements 
in the in-plane direction perpendicular to the flow was kept at three and in the direction of flow 
10, 25 and 50 elements were used. Through the thickness three, five and seven control volumes 
were used. Figure 18 depicts the temperature distribution in the mould mid-plane just after the 
mould has completely filled for the cases in which the number of elements along the mould was 
varied and the number of through-thickness control volumes was set to five. For clarity only 
the results for 10 and 50 elements are plotted. As a reference the theoretical temperature profile 
is also shown. 

The simulation using 10 elements gives errors of more than 6%; however, the largest error 
for 25 elements is less than 3%. For 50 elements the error is less than 1%. 

Figure 19 plots the relative error for the cases in which the number of through-thickness 
control volumes was varied. In these cases the number of elements along the mould was kept 
at 25. When using only three control volumes, significant errors of about 10% occur; when five 
control volumes are used, the error reduces to less than 3%; and for seven control volumes the 
error is approximately 1%. At the inlet the error is zero, since the temperature at that node is 
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Figure 19. Percentage error in the temperature along the mould mid-plane for a number of different mesh sizes 
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specified by the inlet boundary condition. Note that it is computationally more efficient to 
increase the number of through-thickness nodes than the number of in-plane elements. To 
achieve an accuracy of 1%, one can either use 50 elements in the length direction and five 
through-thickness nodes or 25 elements in the length direction and seven through-thickness 
nodes. In the first case there are 250 temperature nodes; in the second there are only 175 and 
one only needs to solve for the pressure in half the nodes, resulting in 60% less CPU time. 
Figure 20 shows the convergence for both types of mesh refinements. 

The average number of iterations required to achieve convergence to lo-’ was six. As the 
mould fills slightly, one or two more iterations are required than at  the beginning of the mould 
filling. These results indicate that the numerical implementation does converge to the analytical 
solution. 

4. CASE STUDY 

To illustrate the mould filling of a three-dimensional part, we simulated the filling process for 
the cross-member of a passenger van.37 Figure 21 shows the finite element discretization of the 
cross-member. I t  is a closed thin shell part with a foam core. The part has a complex geometry, 
including four holes at the bottom. The mesh has approximately 2200 nodes and 2500 elements. 
Seven through-thickness temperature nodes were used for this simulation. In this case the mould 
is filled uniformly with random mat. The parameters used in the simulation are listed in Table 111. 

Figure 22 shows the flow front versus time for the mould-filling simulation. Resin is injected 

Figure 21. Finite element discretization of a cross-member for a passenger van 
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Table 111. Parameters used in the simulation of 
the mould filling of a cross-member of a passen- 
ger van (partially from References 18 and 26) 

Preform properlies 
0.75 
1.63 x 
1.63 x 

Pj (Pa) 

Boundary conditions 

5 x 1 0 5  
20 

100 
50 
80 

Thermal properties 
P r  (kg m -13) 1280 
cp, (J kg- K - '  I900 
Pr (kg m - 2560 

880 c,,, (J kg-' K -  ') 
q ( W m - ' K . - ' )  1 .oo 
K, (W m - l  K') 0.2 

Kinetic properties 

A' 1.36 x lo2* 
El  (kJ mol-') 2244 
A,  (S-I) 1.25 x 10" 
E ,  (kJ rno1-I) 223.0 
rn 0.226 
n 1.856 
E,  (J g- '1 347 

a ,  (N s m-') 
Chemorheoloyical properties 

bo 23.1 
D (kJ mol- ') 32.6 
h (kJ mol-') 18.3 

6.41 x 10-5 

Figure 22. Flow front versus time lor the non-isothermal mould tilling of a cross-member. Each contour represents 12 s 
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Figure 23. Temperature distnbuiion along me mid-plane 01 the cross-member 01 a passenger van. Each contour 
represents 8 "C 

from the centre front. The flow front progresses along the top and bottom of the part and merges 
at the back. From the results it is clear that one needs exit gates at the top of the mould, at the 
back centre and at the circular holes to prevent air entrapment in the mould. 

Figure 23 shows the temperature distribution along the mould mid-plane when the mould 
has just filled completely. As expected, the temperature is highest near the top corners of the 
mould, since that is the area that filled last. The temperature near the inlet is close to the inlet 
boundary condition. Figure 24 shows the onset of cure at the points where the resin has the 
longest residence time and the highest temperature, about 2 min after the mould filling has 
completed. On average about seven to eight iterations were required to achieve convergence to 

The results of the simulation were compared with actual flow front positions obtained from 
short-shot experiments. Good qualitative agreement was found.36 The deviations between 
experiments and simulation results are attributed to preform non-uniformities. 

The finite element/control volume method is very suitable for handling such geometries. 
Simulating flow in a complex structure such as this requires no additional numerical techniques. 
It is worth noting that despite the large and complex mesh, the CPU time is less than 5 h on 
a Sun 670MP, illustrating that the finite element/control volume method is not CPU-intensive 
as compared with other numerical techniques. 

on the temperature solution. 

Figure 24. Degree of conversion at the onset of cure in the cross-member of a passenger van. Each contour represents 
7% conversion. The maximum degree of conversion i s  70% 
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5. CONCLUSIONS 

A numerical simulation was developed to predict the free surface and its interactions with heat 
transfer and cure for flow of a shear-thinning resin through the fibre preform. The flow part of 
the simulation is based on the finite element/control volume method. Since the traditional control 
volume approach produces an error associated with a mass balance inconsistency, a new method 
was proposed, the element control volume method. 

The heat transfer and cure analysis in the simulation are based on the finite difference/control 
volume method. Since the conduction of heat is important in the through-thickness direction 
and the convection is important in the plane, the heat transfer and cure are solved in fully 
three-dimensional form. A simple concept of the boundary condition constant was introduced 
which models a realistic mould configuration with a heating element located at a distance behind 
the mould wall. The varying viscosity throughout the mould associated with the temperature 
and degree of cure distribution is accounted for in calculating the mould-filling pattern. This 
introduces a two-way coupling between momentum and energy transport in fibrous media. 

The simulation was verified by comparing the results with closed form solutions in simple 
geometries. A case study of a complex threedimensional part was presented to illustrate the 
robustness and computational efficiency of the numerical simulation. 

REFERENCES 

I .  M. V. Bruschke and S. G. Advani, 'Flow of generalized Newtonian fluids across a periodic array of cylinders,' J. 

2. T. A. K. Sadiq, R. S. Parnas and S. G. Advani. 'Experimental investigation of flow in resin transfer molding,' Proc. 

3. C. D. Rudd, M. J. Owen, V. Middkton. K. N. Kendall and 1. D. Revill, 'Developments in resin transfer moulding 

4. F. C. Robertson, 'Resin transfer moulding of resins-a review,' Er. Polym J., 20,417429 (1988). 
5. C. L. Tucker 111 and R. B. Dessenberger,'Governing Equations for Flow and Heat Transfer in Stationary Fiber Beds', 

6. M. V. Bruschke, S. G. Advani and R. S. Parnas, 'Resin Transfer Molding', in Flow and Rheology in Composires 

7. H. Darcy, Les Fontaines Publiques & lu Ville & Dijon, Dalmont. Paris, 1856. 
8. R. A. Grecnkorn, Flow Phenomena in Porous Media, Marcel Dekker, New York. 1983. 
9. M. V. Bruschke and S. G. Advani, 'Mold filling of generalized Newtonian fluids in anisotropic porous media' in 

10. M. V. Bruschke and S. G. Advani, 'A finite element/control volume approach to mold filling in anisotropic porous 

1 I. M. J. Liou, W. B. Young, K. Rupel, K. Han and L. J. Lee, 'Mold filling analysis of resin transfer molding,' froc. 

12. F. Trochu, R. Gauvin and Z. Zhang, 'Simulation of mold filling in resin transfer molding by non-conforming finite 

13. F. Trochu and R. Gauvin, 'Limitations of a boundary-fitted finite ditTerence method for the simulation of the resin 

14. C. L. Tien. 'Convective and radiative heat transfer in porous media,' Adu. Appl. Mech., 27. 225-281 (1990). 
15. K. Vafai and M. Sozen, 'A comparative analysis or multiphase transport models in porous media,' Ann. Reu. Hear 

16. S. Whittaker. 'Simultaneous heat, mass and momentum transfer in porous media: a theory of drying' Adu. Hear 

17. D. A. Nield and A. Bejan, Conuecfion in Porous Mediu, Springer, New York, 1992. 
18. F. N. Scott, 'Processing characteristics of polyester resin for the resin transfer moulding process,' Ph.D. Thesis. 

19. R. Lin. L. J. Lee and M. J. Liou, 'Nonisothermal mold filling in resin transfer molding and structural resin injection 

20. M. Uenoyama and S. I .  Giiqeri, 'Analysis and simulation of structural resin injection molding,' Tech. Rep. 91-09, 

21. M. J. Owen, V. Middleton, C. D. Rudd, F. N. Scott, K. F. Hutcheon and 1. D. Revill, 'Materials behaviour in resin 

Rheol., 31, 479-498 (1993). 

24rh Inr. SAMfE Tech. Con$, SAMPE, 1992. 

for high volume manufacture,' froc. ASM/ESD Advanced Composires Cont, ASM/ESD, 1990, pp. 301-314. 

in Flow and Rheology in Composires Manufacturing. ed. by S.G. Advani, Elsevicr. Amsterdam, 1994. 

Manufucturing, ed. by S.G. Advani, Elsevier, Amsterdam, 1994. 

Trunsporr Phenomena in Murerial Processing, ASME Trans. HTD. Vol. 132, 149-158 (1990). 

media,' folym. Compos., 11, (1990). 

Fubricafing Composires '89, SME 1989. 

elements,' Proc. 3rd Inf. Con/: CADCOMP P2, 1992. 

transfer molding process.' J. Reinforced Plust. Compos., 11, 772-786 (1992). 

TrunsJer, 3, 145- I62 (1 990). 

Tranfer, 13, ( I 977). 

University of Nottingham, 1988. 

molding,' Proc. 49rh Ann. Tech. Conf-ANTEC 9/. SPE. 1991. 

Center for Composites Materials, University of Delaware, Newark, DE, 1991. 

transfer moulding (RTM) for volume manufacture,' Plust. Rubber Process. Appl.. 112, 221-225 (1989). 



VISCOUS FLOW THROUGH FIBROUS MEDIA 603 

22. J. L. Whitmy and R. L. McCullough, Delaware Composites Design Encyclopedia, Vol. 2, Micromechanical Materials 

23. S. Sourour and M. R. Kamal. SPE Tech. Paper 18(93), 1972. 
24. M. R. Kamal. S. Sourour and M. Ryan. SPE Tech. Paper 18(187). 1973. 
25. M. R. Kamal and S. Sourour, Polym. Eng. Sci., 13, (1973). 
26. D. S. Lee and C. D. Hen. 'A chemorhcological model for the cure of unsaturated polyester resin,' Polym. Eng. Sci., 

27. T. A. Osswald and C. L. Tucker, Int. Polym. Process.. (1990). 
28. H. P. Wang and H. S. Lxe, 'Numerical techniques for free and moving boundary problems,' in Firndamentals of 

Computer Modpling for Polymer Processing, Hanscr. Munich. 1989, pp. 36%399. 
29. V. W. Wan& C. A. Heibcr and K. K. Wan& SPE Tech. Paper 31. 1985. 
30. J .  P. Coulter, B. F. Smith and S. 1. Giipi, Proc. 2nd Tech. Con&. ASC, 1987. p. 209. 
31. C. L. Tucker, Injection and Compression Molding F d m e n t a l s ,  Marcel Dckker, New York, 1987. 
32. C. A. Hiebcr and S. F. Shcn. J. Non-Newtonian Fluid Mech.. I ,  (1980). 
33. P. Virlouvet and C. L. Tucker, 'Volume conserving finite elements for mold filling simulations,' Proc. Polymer 

34. P. J. Roache, Computational Fluid Dynamics, Hermosa, Albuquerque, NM, 1985. 
35. C. A. J. Fletcher, Springer Series in Computational Physics, Vol. 1. Computational Techniquesfor Fluid Dyamics, 

2nd edn, Springer, Berlin, 1990. 
36. M. V. Brurhkc, 'A predictive model for permeability and non-isothermal flow of viscous and shear-thinning fluids 

in anisotropic fibrous media,' Ph.D. 7'hesk, University of Delaware, Newark, DE. 1992. 
37. C. F. Johnson and N. G. Chavka, 'Preform development for a structural composite crossmcmbcr,' Proc. Fourth 

Ann. ConJ on Adoanced Composites, ASM International, Metals Park, OH. 1988, pp. 35S365. 

Modeling. Technomic, Lancaster, 1990. 

n. 9 5 ~ 9 6 3  ( I  987). 

Processing Society 7th Ann. Meet., 1991. 




